Investigation of a Modified Mid-Point Quadrature Formula

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A corrected quadrature formula and applications

A straightforward 3-point quadrature formula of closed type is derived that improves on Simpson’s rule. Just using the additional information of the integrand’s derivative at the two endpoints we show the error is sixth order in grid spacing. Various error bounds for the quadrature formula are obtained to quantify more precisely the errors. Applications in numerical integration are given. With ...

متن کامل

A Modified Monte-Carlo Quadrature

where "| A |" denotes the (fc-dimensional) volume of A. If the x¡ are regarded as independent (or at least pairwise independent) random variables, then the estimator / is a random variable whose mean is I and whose standard deviation is dN~112, where d2 = | A \ jA f2 — (JA f)2. (7 is the mean, and d is the standard deviation of the random variable | A ¡fix), where x is a random variable uniform...

متن کامل

Quadrature formula for computed tomography

We give a bivariate analog of the Micchelli-Rivlin quadrature for computing the integral of a function over the unit disk using its Radon projections. AMS subject classification: 65D32, 65D30, 41A55

متن کامل

Quadrature formula for sampled functions

Abstract—This paper deals with efficient quadrature formulas involving functions that are observed only at fixed sampling points. The approach that we develop is derived from efficient continuous quadrature formulas, such as Gauss-Legendre or Clenshaw-Curtis quadrature. We select nodes at sampling positions that are as close as possible to those of the associated classical quadrature and we upd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1966

ISSN: 0025-5718

DOI: 10.2307/2004271